
www.manaraa.com
HMMNH

www.manaraa.com

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

no. 2>2>l-33(o

cop. 2

www.manaraa.com

The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books
are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

SEP 2 W;

> l 2 RECTO

SEP 3 \ 1996

L161— O-1096

www.manaraa.com

Digitized by the Internet Archive

in 2013

http://archive.org/details/universityofilli334well

www.manaraa.com

Report No. 33^
rr ct^c^^

THE UNIVERSITY OF ILLINOIS
ATTACHED MACHINE OPERATING SYSTEM:
DESIGN CRITERIA AND PROGRAM LOGIC

by

Richard A. Wells

June, 1969

NOV 91972

^iVERSITY OF ILLINOIS
AT URBAWA-CHAMPAiGN

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS

www.manaraa.com

www.manaraa.com

Report No. 33^

THE UNIVERSITY OF ILLINOIS
ATTACHED MACHINE OPERATING SYSTEM:

DESIGN CRITERIA AND PROGRAM LOGIC*

by

Richard A. Wells

June, 1969

Department of Computer Science

University of Illinois
Urbana, Illinois 6l801

* This work was supported in part by the National Science Foundation

under Grant No. NSF-GP-763U and was submitted in partial fulfillment

of the requirements for the degree of Master of Science in Computer

Science , June, 1969*

www.manaraa.com

www.manaraa.com

Ill

ACKNOWLEDGMENT

The author is grateful for the invaluable advice and

assistance of Professor H. G. Friedman, who supervised the AMOS

project, and to those University representatives of IBM Corporation

whose efforts were instrumental in the development of the system.

www.manaraa.com

www.manaraa.com

IV

PREFACE

In the spring of 1968, an IBM 1800 computing system was

installed in the Digital Computer Laboratory at the University of

Illinois and attached to the System/360 Computer Complex.

Various factors dictated the development of a new operating

system for the 1800 . This paper is a summary of the design decisions

made and the resulting program logic flow of that operating system.

www.manaraa.com

www.manaraa.com

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. CONTROL PROGRAM DESIGN CRITERIA 5

2.1 1800 Hardware Minimization 5

2 .2 System/360 Software Independence 6

2.3 Data Reduction and Program Compilation 7

2. .h User Control/Communication 8

2.5 System Modularity 10

2.6 Job Accounting 11

3. CONTROL PROGRAM LOGIC lk

3.1 Basic Concepts 16

3.1.1 Logical Files of the 1800-360 Adapter 16

3.1.2 The Event Control Word 17

3.1.3 AMOS Subroutine Hierarchy 19

3.2 AMOS/1800 Component Description 19

3.2.1 Control Supervisor (NUCLS) 19

3 .2 .2 Console Typewriter Input/Output Supervisor

(CNSUP) 21

3.2.3 Console Message Handler (CSERV) 23

3.2.1+ Input/Output Supervisor (IOSUP) 2.h

3.2.5 Program Loader (LOADR) 25

3.2.6 1800 Job Scheduler (S0J0B/E0J0B) 27

3.2.7 Adapter File Control (CAFIL) 29

www.manaraa.com

www.manaraa.com

VI

TABLE OF CONTENTS—CONTINUED

Page

3.2.8 Initialization Program (INIT) 30

3.2.9 Other AMOS/1800 Components 31

3-3 The Syctem/360 Control Program 32

3.3.1 Channel-to-Channel Adapter Programming 32

3. 3 '2 Adapter Response Requirements 33

3. 3 '3 Program Data Requirements 35

3«3'*+ Other Logic Provisions 35

3A The 36O-I8OO Assembler 36

k. DEVELOPMENT PLANS 38

U.l Analog/Digital Supervisor 38

1+.2 Assembler Macro Facility 38

k.3 Transient Scheduler (S0J0B/E0J0B) 39

k.h Compiler Possibilities 39

h.3 Multiprogramming 39

k.6 1800-360 Parallel Computation kO

BIBLIOGRAPHY Ul

APPENDIX

A. SYSTEM TABLES 1+2

B. AMOS/1800 PROGRAM LOGIC FLOW DIAGRAMS 56

www.manaraa.com

www.manaraa.com

1 . INTRODUCTION

In the spring of 1968, an IBM 1800 computing system was

installed in the Digital Computer Laboratory at the University of

Illinois. The primary purpose of the 1800 computer is to provide an

extended analog processing capability to the University. Prior to the

l800, analog processing was done on the ILLIAC II computer, which was

disassembled on August 31> 1968

.

There were several reasons for the selection of an 1800

system. Most important was the requirement that analog processing be

an integral part of the University of Illinois System/360 complex

without disproportionately overloading the 360 computers. The problem

of overload precluded the direct attachment of an analog control unit

to a 360 computer; the alternative was a central processing unit

dedicated to analog processing, with a hardware attachment to the

System/360 complex for access to 360 facilities. In view of the

centralization requirement, it was desirable that the analog processing

CPU have the ability to utilize 36O peripheral equipment. Another

obvious reason was the savings that would be realized by not having to

duplicate peripheral devices.

The solution to these difficulties was the 1800 computer,

interfaced to a 360 system as shown in Figure 1.

www.manaraa.com

www.manaraa.com

360 peripheral equipment
360

1 1

j I

logical data paths

360 CPU

1800-360 channel-
to-channel adapter

data
channel

switching unit

36O tape control unit

K

1
360 digital tape drives

1800

1800 system

360
control
unit
adapter
f

data
channel

Figure 1.

Direct communication between the 1800 and 360 computers is

provided toy the 1800-360 channel-to- channel adapter , a device which

permits either CPU to request data transmission with the other by

interrupt. The interrupted CPU responds to a request by determining

in which direction the data flow is to occur and then issuing the

appropriate command to the adapter , which initiates data transmission,

www.manaraa.com

www.manaraa.com

Since exclusive use of the adapter by the 1800 for analog

processing purposes would require extensive 3&0 CPU attention (thus

defeating the purpose of a separate CPU) , a more direct interface to

36O input/output equipment was also necessary. This problem was solved

by an 1800 special feature which allows the attachment of a 360 control

unit directly to an 1800 data channel. Specifically, the 1800 channel

was routed through a switching unit to a 36O tape control unit,

2
allowing the 1800 access to 9-track digital tapes.

This configuration permits the 1800 to obtain control and

diagnostic information from the 360 computer via the adapter (also

permitting the 3^0 to supervise execution of jobs on the 1800) , and

yet analog processing tasks can be performed on the 1800 independent

of the 360 CPU (by using the 360 digital tape drives)

.

From a hardware standpoint, the configuration is ideal in

that the best features of an independent CPU and a dependent control

unit are combined, with the 1800 taking whatever form is necessary at

any given time.

www.manaraa.com

www.manaraa.com

Footnotes

at rates up to 250,000 bytes per second.

2
maximum data rate of 180,000 bytes per second

www.manaraa.com

www.manaraa.com

2. CONTROL PROGRAM DESIGN CRITERIA

A survey of currently available software systems for the 1800

quickly showed that none could support the hardware specifications

outlined in Section 1. In particular, the two operating systems

provided by IBM for the 1800 are strictly for stand-alone 1800

systems. They each require 1800 disk storage, 1800 unit record

equipment, and extensive amounts of core storage; furthermore, no

provision is made for attached 360 facilities.

This situation necessitated the design and implementation

of an 1800 operating system tailored to the specific needs of the

University of Illinois. Several key requirements became obvious during

the design stage of that operating system (now known as AMOS - Attached

Machine Operating System) . Those requirements are presented below.

2.1 1800 Hardware Minimization

In order to minimize duplication of 360 hardware on the 1800,

it was necessary to design the 1800 control program so as to utilize

existing 360 peripheral equipment via the channel- to- channel adapter.

The method chosen involved allocation of the adapter into sixteen

logical files, with each file "attached" to an appropriate 360 device

by a control program on the 360 computer. Thus, such functions as

system input (card images), system output (print line images), access

to library subroutines, etc., were each assigned a logical file

across the channel- to- channel adapter. As a result, the minimum 1800

www.manaraa.com

www.manaraa.com

hardware configuration necessary for AMOS operation included:

1800 central processing unit (1801 or 1802)

minimum of 8,000 words of core storage

I8OO-360 channel-to- channel adapter

l8l6 console typewriter

Initial Program Load (IPL) ; either a lUU2 card reader

or a 105^- paper tape reader

Obviously, additional equipment was necessary for application

programming purposes, such as the digital tape interface, analog/

digital converters, etc. A complete description of the University of

Illinois 1800 hardware configuration can be found in Department of

2
Computer Science Report No. 280

.

2 .2 System/360 Software Independence

Responses to 1800 requests across the channel-to-channel

adapter must be performed by a supervisory program which resides in

System/360 internal storage. Such a program should be responsible for

satisfying 1800 requests, monitoring the status of the job executing

on the 1800, and serving as an interface between the two computing

systems

.

Methods of communication across the adapter were organized

in such a manner as to make the 1800 AMOS supervisor as logically

independent of its 360 counterpart as possible. This decision was

based on the modularity of 360 hardware, which has resulted In the

availability of a multitude of 360 programming systems. As a result,

future changes in System/360 software should have a minimum impact on

www.manaraa.com

www.manaraa.com

the AMOS system; only the 360-resident 1800 control program need be

rewritten.

As a brief example, consider a request from the 1800

supervisor (AMOS) for the next system input (SYS IN) card image. AMOS

expects the 360 program to respond by sending a card image across the

adapter; AMOS cares not at all where the 360 program obtained the card

image .

2.3 Data Reduction and Program Compilation

The fact that the 1800 instruction repetoire lacks both

floating-point and character manipulation instructions suggests that

1800 application program compilations or assemblies and 1800 data

reduction tasks should be removed from the 1800 to the attached

System/360 computers. This decision was further enhanced by the

availability of a 360-resident 1800 assembler, which proved to be

easily adaptable to the AMOS system. Subsequent experience with the

assembler has shown it to be quite reliable and far faster and more

flexible than its stand-alone 1800 counterpart.

The lack of a FORTRAN compiler was not expected to be a

serious problem since data reduction on the 1800 was to be minimized;

experience to date has shown this decision to be essentially correct.

www.manaraa.com

www.manaraa.com

2.U User Control/Communication

Perhaps the most serious problem encountered in the design of

AMOS was the conflict between the 1800 user and the attached System/360

computer for control of the 1800

.

The very nature of analog processing requires a high degree of

"hands on" participation by humans. For example, consider the various

sources of analog data: AM/FM tape recorders, process control and

experimentation equipment, etc. In contrast, the lack of 1800 unit

record devices and the requirement that 1800 job accounting be done on

the System/360 dictated that jobs be routed to the 1800 from the 360

only . This implied that users present for the online handling of their

1800 jobs would be at the mercy of the System/360 job scheduling

programs. To complicate the problem, many 1800 jobs would need access

to 360 computation facilities prior to 1800 execution for assembly

purposes; thus, such jobs would be in competition with the entire

System/360 job queue, while the 1800 user would have no recourse but

to wait for an unknown period of time for his job to become active on

the 1800.

A possible answer to this situation involved the modification

of the System/360 job scheduling routines so that jobs requiring 1800

processing would be expedited through the 360 job queue. Experience

with this solution to date has shown it to be satisfactory for both

the 1800 user and the System/360 job queue, since System/360 assembly

of an 1800 program typically requires only a few seconds of 360 processing

time, and as a result normal 360 job processing is not appreciably delayed,

www.manaraa.com

www.manaraa.com

This situation is expected to improve even further in the

future for two reasons: the addition of System/360 multiprogramming

support and the availability of a generalized analog/digital conversion

program to the AMOS system. The latter program will eliminate the

necessity of user-written programs (requiring 36O assembler time) for

the great majority of 1800 users , therefore allowing most 1800 jobs to

compete only with jobs in the 1800 queue. (This program is described

more fully in Section U.l.) System/360 multiprogramming support should

make the 360 CPU more accessible to small, fast-running jobs, such as

1800 program assemblies.

The fact that this problem has not been as severe as first

expected has given rise to the possibility of its other extreme:

namely, the 1800 job arriving at the 1800 computer before the user has

had time to prepare his equipment. There would appear to be many rather

simple solutions to this situation should it appear. For example, one

method might involve a system- imposed "hold" on certain 1800 jobs, which

would prevent premature execution. At the operator's discrimination,

such jobs could be "released" from hold status, allowing them to begin

processing.

The overall solution to the 360/user control conflict was

based on the fact that normal execution of an 1800 job could be

disrupted in one of only four ways:

1) by the 1800 program itself

2) by the 1800 operator (typically a user)

3) by the System/360 computer

k) by lack of proper 360 reaction to an 1800 request.

www.manaraa.com

www.manaraa.com

10

Discounting system errors, methods l) , 2), and h) are not

applicable j only 3) need be considered.

The possibility of arbitrary 3&0 intervention was eliminated

by requiring that the 360 control program (discussed in Section 2.2)

be passive in nature, i.e., the 360 control program should communicate

with the 1800 in two instances only:

1) in response to an 1800 request for information transfer

across the channel-to-channel adapter;

2) whenever it becomes necessary to terminate execution of

an 1800 job due to the existence of an abnormal condition

detectable only by the System/360 computer.

An example of the latter condition is when the time estimate of an 1800

3
job has been exceeded.

In this environment, the 1800 (and therefore the 1800 user)

retains control of 1800 job execution unless the situation deteriorates

to the point at which it becomes necessary for the 360 control program

to intervene

.

2.5 System Modularity

In the design and implementation of a new operating system,

one must be prepared for unforeseen problems no matter how extensive

the planning. These unknown problems can be minimized by applying the

concepts of modularity and simplicity to the structure of the system.

Modularity is obtained by centralizing similar logic paths and resolving

idiosyncrasies of individual paths with the use of tables. This method

www.manaraa.com

www.manaraa.com

11

requires a minimum of code and the result is easy to modify or expand

(it is far simpler to change or add to tables than it is to edit code)

A drawback to modular systems is the additional overhead

involved in performing a given function, as exemplified by

Operating System/360. Although the minimization of system overhead

was quite important in the design of AMOS (due to the nature of

analog/digital conversion processes), it was felt that the specific

nature of the system (analog data processing) would more than

cancel out any overhead introduced by modularity. In order to

assure this result, AMOS was designed so that in certain instances

normal system logic could be bypassed by the application program;

also, a "necessary and sufficient" attitude was taken throughout

the development of the system. Basically, this means that each

component of AMOS is to perform a necessary function and shall be

no more sophisticated than necessary.

2.6 Job Accounting

In order to keep accounting logic as straightforward and

simple as possible, it was imperative that 1800 job accounting be

centralized on the attached 360 computer within the existing

accounting software used for System/360 jobs. The decision for

centralized accounting was made prior to the installation of the

360 equipment, and the 360 accounting routines were therefore

www.manaraa.com

www.manaraa.com

12

written in a general manner, allowing for the insertion of logic for

additional computers as they were added to the System/360 complex.

www.manaraa.com

www.manaraa.com

13

Footnotes

1
IBM Time-Sharing Executive (TSX) System
IBM Multi-Programming Executive (MPX) System

Wells, R. A., Carter, C. E., and Friedman, H. G. "ILLINET Analog
Facilities," Department of Computer Science, University of Illinois,
Urbana, Illinois, Report No. 280, 1968

.

o

Time, line, and card estimates are monitored "by the System/360 in

view of Section 2.1.

2

www.manaraa.com

www.manaraa.com

Ik

3. CONTROL PROGRAM LOGIC

This section deals with detailed explanations of the principal

programs which comprise the AMOS system. For clarity, AMOS/1800 will

"be defined as that collection of programs which are 1800 resident}

AMOS/360 will denote the 360 control program described in Section 2.2.

Figure 2 gives a brief summary of the communication paths

between the main components of AMOS/1800.

www.manaraa.com

www.manaraa.com

*

IOSUP

CAFIL 4-t>

LOADR

to all •
programs

NUCLS

CNSUP CASUP

DUMP CSERV

>_ SOJOB/EOJOB

application program

I
transient
subroutine (s)

15

low core area
(permanently
resident programs)
i.e., AMOS/1800

high core area
(transient
programs) -

programs obtained
from previous 360
assemblies or
AMOS/360 subroutine
library

Figure 2

.

denotes call/return linkage in the direction of the
darkened arrowhead.

denotes "call/no return".

means callable by an application program.

www.manaraa.com

www.manaraa.com

16

3.1 Basic Concepts

3.1.1 Logical Files of the I8OO-36O Adapter

As mentioned earlier, effective utilization of 360 peripheral

equipment is obtained by logically dividing the 1800-360 channel-to-

channel adapter into sixteen distinct files and assigning each file

(logically, by AMOS/360) to some destination or origin within the

System/360 complex. For example, all system output data generated by

the 1800 is routed by AMOS/18OO to logical file 3 of the adapter. The

data is transferred across the adapter to AMOS/360, which is responsible

for insuring that the data is eventually printed on a System/360 line

printer

.

Each of the files may be thought of as a sequential device

much like a digital tape unit; i.e., data may be "written" on the file

(sent to AMOS/360), the file may be "rewound" (logically repositioned

by AMOS/360), and data may be "read" from the file (retrieved from

AMOS/360) . This concept is quite similar to the one used by the

IBM Attached Support Processor program for communication between two

System/360 computers and is obviously quite general in nature. Of

course, the adapter hardware does not in itself accept such commands

as "backspace file 8"; a detailed explanation of how this is done is

given in Section 3.2.7.

www.manaraa.com

www.manaraa.com

17

3.1.2 The Event Control Word

One of the more important aspects of an operating system is

its ability to effectively schedule and synchronize the various

processes which can function concurrently with, and independently of,

the execution of machine instructions within the CPU. These

"asynchronous" processes include such items as the incrementing of an

interval timer, the transmission of information to and from internal

storage by a data channel, the typing of a message on the console

typewriter by the operator, etc.

The method utilized by AMOS is similar to that used by

Operating System/360, due to its utmost generality and simplicity, and

is based on the sole assumption that the termination of an asynchronous

process will be signalled by a CPU interrupt. The concept is centered

on the Event Control Word (ECW) , which may be defined as a location in

internal storage (reserved by an application program or subroutine)

whose contents reflect the status of a particular asynchronous process.

By convention, if the contents of the ECW are zero, then the asynchronous

process has not yet terminated (again by convention, a storage location

does not become an ECW until the process with which it is associated

has been started by the CPU) . If the contents are non-zero, then the

associated asynchronous process has terminated; furthermore (when

applicable), the non-zero contents of the ECW reflect the terminating

status of the operation (whether or not the process terminated normally

and, if not, why not) . The "event" in "Event Control Word" refers to

the termination of the asynchronous process.

www.manaraa.com

www.manaraa.com

18

The location which is to become an ECW is generally zeroed

by the application or AMOS program prior to initiation of the process

with which the ECW is to be associated, and its address is then passed

to the AMOS program which is to initiate the asynchronous process.

After the process is started, control is returned. to the calling

program which may proceed with main line execution, initiate other

processes (using different ECW's), etc. When the event of process

termination occurs, the CPU is interrupted and the appropriate AMOS

interrupt routine then sets the ECW associated with the event to non-

zero, and suspended execution is resumed.

Since interrupts are transparent to an application program,

no notice is given to the program with the exception that the contents

of an ECW have been transformed from zero to non-zero. It is the

responsibility of the application program to periodically interrogate

ECW's of outstanding events with which the program is concerned.

This interrogation may be performed directly by simply testing

the contents of the ECW location for zero. An alternative to this

method is to call the AMOS "wait" routine, passing to it the address

of the associated ECW. WAIT is a simple subroutine; it continually

tests the contents of an ECW, and returns to the calling program only

when the contents of the ECW have been changed to non-zero.

ECW's are used throughout the AM0S/l800 system to signal such

events as the - to + voltage transfer of external experimentation

equipment, analog/digital converter voltage overload, an operator

request to enter a message from the console typewriter, etc. All data

channel operations between internal storage and external input/output

www.manaraa.com

www.manaraa.com

19

devices signal their completion by ECW, as well as expired timer

intervals , and completion of console message operator replies (see

Section 3-2.3) •

3.1.3 AMOS Subroutine Hierarchy

The transfer of control from one program to another is

accomplished by the CAL1 statement, whose final form is the 1800

"branch and store instruction counter" (BSl) instruction. This method

is used regardless of whether the called subroutine is "resident" or

"transient." Resident subroutines are system (AMOS) programs only; the

collection of resident programs makes up what has up to now been referred

to as AMOS/1800. Transient subroutines are considered by AMOS/1800 to

be application-oriented programs loaded from external storage immedi-

ately prior to the commencement of application program execution.

These subroutines originate from AMOS/360, either from the AMOS/360

subroutine library or from the previous assembly of a source program on

the 36O computer (see Section 3«2.7). Figure 2 illustrates the possible

control paths within AMOS/1800

.

3.2 AMOS/1800 Component Description

3.2.1 Control Supervisor (NUCLS)

The heart of the 1800-resident portion of the AMOS system is

NUCLS, the 1800 control supervisor. MJCLS is the only truly conglomerate

www.manaraa.com

www.manaraa.com

20

program of the system, in that system tables as well as many independent

sections of logic are all contained within the one source program.

The most important table in AMOS is the system vector table,

which contains pointers to the various resident portions of AM0S/l800

as well as a great deal of other miscellaneous information (see

Appendix A). The unit control blocks (one for each input/output device)

are a series of tables which describe the various input/output devices

attached to the 1800 computer. The unit control blocks are linked to

the vector table by the device table, which is nothing more than an

array of unit control block addresses indexed by device address.

NUCLS originates at location within the 1800 computer and

therefore is responsible for correct initialization of the various

hardware -as signed internal storage locations, such as those reserved

for interval timers and interrupt branch addresses. Since the 1800 is

a nested interrupt computer, a unique section of machine status save/

restore logic is provided for each interrupt priority level; these

sections are pointed to by the interrupt branch table, which begins at

storage location 8.

The logic of each interrupt routine is typically quite simple,

since the only interrupts processed by the NUCLS routines are

"expected", i.e., they occur as a result of an asynchronous process

previously initiated by an AMOS program. Once machine status is saved,

the process (usually an input/output device) causing the interrupt is

interrogated and its terminating status (in the form of a non-zero

l6-bit quantity) is obtained. The address of the Event Control Word

associated with the device is then found via the appropriate

www.manaraa.com

www.manaraa.com

21

Unit Control Block and the l6 bits of status information are stored

into the ECW, thus setting it non-zero. Machine status is then restored

and suspended processing is resumed.

There are only two devices which can cause "unexpected"

interrupts—the adapter and the console typewriter. These "unexpected"

interrupts are routed to the appropriate AMOS program for processing;

the called program is obliged to eventually return control to the

interrupt routine so that machine status can be restored.

As stated earlier, several independent subroutines are

contained within NUCLS. Among these is the WAIT routine described in

Section 3«1>2.

All interval timer logic is also found within MJCLS, including

the time-of-day (TIME) routine. TIME makes available the current local

time (in seconds) by monitoring interval timer C, which runs continuously.

The remainder of NUCLS is composed of several frequently-used

data conversion routines, including CVTIM (converts a binary integer in

seconds to the EBCDIC form HH:MM:SS) and CVHEX (converts binary to

hexadecimal EBCDIC form)

.

3.2.2 Console Typewriter Input/Output Supervisor (CNSUP)

The l8l6 console typewriter is the primary method of communi-

cation between the 1800 user and his program. This device is completely

controlled by CNSUP, due to the extreme difficulty involved with input/

output between the l8l6 and the 1800

.

www.manaraa.com

www.manaraa.com

22

CNSUP requires that the typewriter always he in one of four

logical states:

1) idle

2) reading

3) writing

h) carriage returning

There are five entry points to CNSUP; four are "by interrupt

and one is by direct call from an AMOS or application program (via

CWRIT) . A call to CWRIT is made when a program wishes to output a

message to the typewriter; the mode is changed from "idle" to "writing"

(unless the current mode is other than "idle", in which case CWRIT delays

until the mode goes to "idle") and output of the message is initiated.

Interrupts from the typewriter are routed by NUCLS to four

possible sections of logic within CNSUP, depending on the mode in effect

at the time of the interrupt. If the mode at time of interrupt is

"idle", then the cause of the interrupt is the 1800 operator (or user)

who is requesting input of a message. Action taken by the program

includes transfer of the mode from "idle" to "reading" and the

initiation of message input.

The difficulty in utilization of the typewriter is due to the

simplicity of the interface between the device and the 1800 CPU; there

is no data channel or hardware buffer. As an illustration of this

difficulty, consider the steps necessary to obtain characters typed by

the operator:

l) CNSUP issues a read command to the l8l6 and then exits.

www.manaraa.com

www.manaraa.com

23

2) Depression of a key by the operator interrupts the 1800;

control is routed to CNSUP by NUCLS

.

3) CNSUP obtains a binary bit pattern associated with the

depressed key;

k) CNSUP translates this pattern to the appropriate EBCDIC

character; and also

5) translates the pattern to the "tilt-rotate" character

output code

;

6) sends the "tilt-rotate" code to the typewriter via a

write command (this prints the character associated with

the depressed key) and then exits;

7) regains control via the interrupt which shows that the

character has been printed; and

8) returns to step l) for the next input character.

3.2.3 Control Message Handler (CSERV)

The function of CSERV is to process control messages passed

to it from either CNSUP or SOJOB (the job scheduler). The syntax of

control messages typically consists of a one-character verb followed

by a "modifier" field made up of an arbitrary number of characters.

One of these messages, the "reply" message, consists of an R,<text>

syntax and is the form used for operator/program communication.

A program notifies CSERV that an impending operator- input

message is to be expected by calling REPLY (an entry point within

CSERV)
, passing as parameters two addresses; the first address points

www.manaraa.com

www.manaraa.com

2U

to an input buffer area and the second to an Event Control Word. Action

taken by REPLY basically consists of saving the two addresses. When

CSERV is passed an R,<text> message by CNSUP, the <text> field is moved

to the input buffer area and the ECW is set to non-zero. The

application program requesting the "reply" message is thus informed of

its presence by examination of the ECW.

Other control messages processed by CSERV are described in

detail in section 6 of the "AMOS User's Guide, Version 2".

3-2.1+ Input/Output Supervisor (IOSUP)

It is the function of IOSUP to initiate data transfer between

internal storage and all external input/output devices attached to the

1800 computer, with the sole exception of the l8l6 console typewriter.

IOSUP is invoked by direct call from an AMOS or application program;

arguments passed to IOSUP include a device address, an Event Control

Word address, and an Input/Output Control Command (IOCC) to be

executed.

Prior to executing the IOCC, IOSUP performs several tests

related to the specified device in order to assure successful

initiation of the operation. In addition, the specified ECW address

is placed by IOSUP into the appropriate Unit Control Block and the ECW

itself is zeroed.

Only after all tests have been satisfied does IOSUP execute

the IOCC. Return is then made to the calling program, so that

effective overlapping of CPU and input/output processes can be realized.

www.manaraa.com

www.manaraa.com

25

3-2.5 Program Loader (LOADR)

It is the responsibility of the LOADR program to transform

application programs and transient subroutines into executable code

within 1800 internal storage. Input to the "loader" is in the form of

intermediate object records (output by the 36O-I8OO assembler described

in Section 3«^) obtained across logical file k of the channel-to-channel

adapter. Since the final 1800 internal storage origin of an application

program or subroutine is unknown at assembly time, all programs

processed by LOADR are expected to be of the relocatable format;

"absolute" programs are not allowed.

The calling program is required to provide the loader with an

origin address , which is normally the first location in the transient

area of internal storage. The "main" program is then fetched (from

adapter file k) and loaded beginning at the specified location. When

input data from logical file k signals the end of a program, all CALL

statements are resolved by scanning a table of external entry points

which is constructed during the loading process. This table is built

beginning at the end of the transient area and expands toward the

beginning of the transient area as more programs are loaded. See

Figure 3

•

www.manaraa.com

www.manaraa.com

26

low core high core

loaded
program

subroutine

#1 #2

external
symbol
definition
table

resident
area

transient area

Figure 3

Loaded programs are allowed to overlay the external symbol

definition table only if the overlay is done in a non-destructive

manner, i.e., those portions of the program(s) within the overlay may

5not be initialized with instructions or data. This restriction only

occurs with the very largest of programs and may otherwise be ignored.

When file k is exhausted, LOADR scans the external symbol

table for CALL'S to undefined (unloaded) programs. If such a reference

is found, the name of the undefined program is sent to AMOS/36O . If

6
AMOS/36O can locate the requested program, it is expected to honor

further file h requests by LOADR with object records of the desired

program.

www.manaraa.com

www.manaraa.com

27

When the program and all necessary subroutines have been

loaded, LOADR transfers control to the program. The calling sequence

is disguised so that return from the loaded program is to the program

which invoked LOADR, rather than to LOADR itself.

3.2.6 1800 Job Scheduler (S0J0B/E0J0B)

The interpretation of control cards and the execution

scheduling of application programs is the responsibility of the job

scheduler S0J0B/E0J0B. SOJOB gains control when processing of a job

has been requested by the 360 control program (AMOS/360) . Logic

consists of initializing various job-oriented flags and reading the

system input stream (SYSIN - adapter logical file l)

.

Control cards for SOJOB are denoted by the presence of $$ in

card columns 1 and 2; cards of this type are read until a non-$$ card

(an error condition) or a $$EXC card is detected. Other control cards

accepted by SOJOB include $$J0B, $$(null), and $$<control statement^

where <control statement> is defined as a string of characters

acceptable as console typewriter input (to CSERV; see Section 3-2.3) •

In other words , if V,OU,0N is an acceptable console typewriter input

message, then $$V,O4,0N is a valid scheduler control card. Such

statements are processed via CSERV just as if they originated from the

console typewriter.

In the current version of the scheduler, a definite precedence

relationship exists between the various control types. This

precedence is:

www.manaraa.com

www.manaraa.com

28

<control statements D $$J0B D $$EXC D $$ or $$EXC, etc.

where D means "must precede".

Detection of $$EXC,x causes SOJOB to relinquish control to

the application program x, where x is either * or a symbolic program

name. In the latter case, SOJOB requests AMOS/36O to position logical

v
file h of the adapter to program x before control is passed to LOADR

for loading and execution of program x. * means that the program to be

executed is already positioned on file k (previously assembled on the

360 computer) and that positioning is not necessary.

Direct (and therefore system error-free) return of the

application program to SOJOB implies that further scanning for $$EXC

cards is to be performed, so SOJOB takes an internal branch to the $$EXC

logic described earlier.

The EOJOB portion of the scheduler is invoked at termination

of application program processing. The nature of the return process

(whether normal or abnormal) dictates whether or not a post-mortem dump

is necessary; if so, EOJOB transfers to the DUMP program.

Other functions performed by EOJOB include the resetting of

various hardware conditions and the logical deallocation of all

peripheral devices which were used by the completed job. When all

housekeeping has been completed, EOJOB informs AMOS/36O that the current

job has terminated by placing a unique command into the adapter and then

waiting for the AMOS/360 response to the command.

The response may or may not be forthcoming shortly; the

clearing of the adapter by the 360 signifies initiation of a new job

by AMOS/36O . If no jobs are currently available for 1800 processing,

www.manaraa.com

www.manaraa.com

29

the 1800 "end of job" command is left "dangling" in the adapter

controls. Since command initiation was by the 1800, the 3&0 selector

channel to which the adapter is attached remains in a free and usable

status. Eventually, receipt of the 3&0 response by EOJOB results in

a transfer of control from EOJOB to SOJOB.

3.2.7 Adapter File Control (CAFIL)

CAFIL is a collection of routines which serialize and

simplify data transfer across the most-used files of the channel-to-

channel adapter. Each subroutine has a unique entry point (such as

SYSIN, SYSMS, SYSPR, SYSPU, etc.) and is responsible for data transfer

across the appropriate logical file. CAFIL itself controls files 0-3

only; the remaining files are utilized via a transient subroutine,

although the file control logic discussed below is used by both.

The requested logical file is communicated to the 360 by use

of the 1800 I/O command modifier bits. Four modifier bits are used for

this purpose, which allows file addresses of from to 15 • The

remaining four modifier bits are used in conjunction with the basic

type of the 1800 command (either "read" or "write") to indicate the

type of operation to be performed on the logical file by AMOS/360 . A

maximum of 32 commands can be defined in this manner.

For example, the 1800 can request AMOS/36O to "rewind" logical

file 8 by using the appropriate modifier bit pattern with a "read" or

"write" command, so long as the 36O uses the same scheme of bit

patterns (strictly a programming convention) and clears the "read" or

www.manaraa.com

www.manaraa.com

30

write command from the adapter.

This is all possible because of the design of the adapter, in

that the command and modifier bits used by the interrupting (initiating)

computer are available to the interrupted (terminating) computer.

A more thorough treatise on the adapter may be found in the

o

1800 Functional Characteristics manual ; the modifier bit convention

used by AMOS is found in Appendix A, Table 1.

3.2.8 Initialization Program (INIT)

The INIT program gains control when the AMOS/18OO system has

been successfully "bootstrapped" into 1800 internal storage. Its

purpose is to perform all functions necessary to prepare AMOS for

initial job processing. Upon completion of these tasks, INIT transfers

control to SOJOB; the internal storage within which INIT resides is

then made available for use by application programs. See Figure k.

dur ing
initialization

low core

resident
AMOS

high core

INIT unused
bootstrap
program

during job
processing

resident
AMOS

application program area

Figure h.

www.manaraa.com

www.manaraa.com

31

The functions of INTT are as follows:

1) initialize various pointers in the System Vector Table;

2) read console switches for special AMOS options (if any);

3) compute partition (application program area) starting

address;

k) protect resident AMOS internal storage locations;

5) initialize interval timer C for time-of-day purposes;

6) inform operator of successful initialization; and

7) transfer control to SOJOB.

3.2.9 Other AMOS/1800 Components

There are several additional programs which form an integral

part of AMOS/1800; their more straightforward nature suggests that

discussion of them can he done in a brief manner.

The INREQ program generates "intervention required" and

"I/O error" messages for the various peripheral devices. It is

generally invoked by IOSUP.

The DUMP program takes full core, partial core (with the

boundaries specified by argument), or panel (registers and status)

dumps by request. Return is to the calling program; thus DUMP can be

used by application programs for "snapshot" purposes.

CASUP is the adapter interrupt handler; it gains control via

NUCLS whenever an adapter interrupt occurs. If the interrupt was due

to a 36O- initiated command, the modifier bits presented by the 360 are

examined and the appropriate action (currently, cancellation of the

www.manaraa.com

www.manaraa.com

32

1800 job) is taken. Otherwise, the interrupt is treated in much the

same manner as any 1800 device terminating interrupt.

3.3 The System/360 Control Program

The routing of data between the various 360 facilities and

the 1800 computer is handled by the System/360 control program

(AMOS/360) . The program currently used at the University of Illinois

executes under control of the Attached Support Processor (ASP) system,

which makes discussion of the program extremely difficult without

assuming extensive knowledge of ASP on the reader's part. In view of

this problem, and to emphasize the generality of AMOS/36O, this section

will deal primarily with the requirements and interfaces which must be

met by an AMOS/36O program.

3«3«1 Channel-to-Channel Adapter Programming

Of primary concern to an AMOS/36O program is the I8OO-36O

channel-to- channel adapter as it appears to the System/360 computer.

Unfortunately, the adapter does not quite conform to general System/360

device standards; the conflict occurs in the instance when the 360

issues a read (write) command to the adapter without realizing that the

1800 has previously issued a read (write) command. This clash of

uncomplementary commands is unavoidable if both CPU's are allowed to

initiate data transfer. The normal reaction of 360 hardware to such an

occurrence would be to signal "command reject", informing the 360

www.manaraa.com

www.manaraa.com

33

program that a complementary command must "be issued since the 1800 was

at the adapter first. The actual signal given is "busy", however,

which is misleading since no data transfer is taking place. The

deceived program is the input/output supervisor of Operating System/360

;

"busy" to it is a temporary condition which will eventually disappear,

and it therefore keeps trying the original 360 command (with no success)

Another less serious problem is the fact that the adapter can

"independently" interrupt the 360 to signal the presence of an 1800

command. This signal must be passed to AMOS/360 so that the proper

response can be given.

Both of these problems are solved by rather simple modifi-

cations to the OS/360 input/output and interrupt supervisors . Another

less elegant method is to completely bypass both of these programs as

far as control of the adapter is concerned.

3.3-2 Adapter Response Requirements

AMOS/36O is a passive program, in that the majority of its

work is done in response to 1800 requests via the adapter. Typical

logic consists of remaining in the wait state until the occurrence of

an adapter interrupt. Upon notification of the interrupt, AMOS/360

senses the status of the adapter. The sense information obtained is

the low-order 16 bits of the command which the 1800 issued to the

adapter (see Appendix A, Table l) . From this data AMOS/36O can

ascertain the "logical command", the "physical command" (read or write),

and the "logical file" as specified by the 1800. All that remains is

www.manaraa.com

www.manaraa.com

3^

for AMOS/36O to take the appropriate action, being sure to clear the

adapter in the process.

For example, suppose that a program executing on the 1800

wishes to read the next card image from the input stream (SYSIN).

This is accomplished by a call to the AMOS/18OO routine SYSIN, which

in turn calls IOSUP, requesting that the following command be issued

to the adapter:

1—:

1 r -1
i—;

1—1
1—

r

15 16 2k
T 1 1

1

—

110 1

—I—I

—

110

31
1—;

1—

1

1—

1

r

00000001input data address

D

Figure 5«

The various command fields are described as follows:

Field A — 01101 is the 1800 address of the adapter

(not needed by AMOS/360)

Field B — 110 is a "read" command (360 -» 1800) .

This is the physical command.

Field C — 00000 is the logical command; as described

in Appendix A, 00000 means only "read".

Field D — 0001 is the logical file address. By

convention, SYSIN is assigned to logical file 1,

www.manaraa.com

www.manaraa.com

35

The resulting 360 interrupt notifies AMOS/360 of the

request . The proper response is to first sense the adapter status,

which results in the receipt of bits 16-31 by AMOS/36O . The next step

is to isolate the file number; if file 1 is logically attached to a

360 card reader, then AMOS/36O reads the next card from the reader.

The data obtained is sent to the adapter with a 360 write command

(complementing the 1800 ' s read command), which initiates the data

transfer and eventually clears the adapter.

3-3*3 Program Data Requirements

In order to process the various 1800 requests, AMOS/360 must

have access to various forms of data, including the AMOS/18OO

supervisor itself, which must be sent across the adapter during the

1800 restart ("bootstrap") process. In addition, a library of AMOS

subroutines must be readily accessible. These data are generally

placed on System/360 direct-access storage; as a result, it is possible

to modify and/or update the AMOS system without accessing the 1800

computer at all.

3.3'^ Other Logic Provisions

In addition to processing 1800 requests, AMOS/36O may control

1800 device allocation, cancel jobs which are executing in an abnormal

manner, and monitor various accounting data. Other programs in the 360

www.manaraa.com

www.manaraa.com

36

system may be responsible for allocating the 360 tapes used by the

1800 and for scheduling the order in which 1800 jobs are to be

processed.

3.1+ The 1800-360 Assembler

The availability of an 1800 assembler which executes on a

System/360 computer affected some of the design decisions described

earlier. Generally known by the acronym MASM, it was recently made

available on a general basis as IBM Type III Program 36OD-O3 • 1.013

•

Although the assembler permits a superset of the statement

repertoire of its stand-alone 1800 counterpart, several additions were

made in order to adapt the assembler to AMOS requirements. The most

important change involved the routing of 1800 object output to devices

other than a 360 card punch (specifically, to 360 direct-access or

tape storage) . Other changes included the insertion of a primitive,

non-parameterized macro facility, as well as several new pseudo-

operations.

www.manaraa.com

www.manaraa.com

37

Footnotes

In reference to the typing ""ball" found in IBM Selectric typewriters,

The l8l6 hardware does not automatically assume responsibility for
printing the character typed by the operator.

3 "Attached Machine Cperating System User's Guide, Version 2,"
Department of Computer Science, University of Illinois, Urbana,
Illinois, 1968.

k

5

6

7

8

IOCC's are the commands which initiate input/output between a device
and internal storage

.

Only BSS and BES statements are allowed in this case.

In a subroutine library located on System/360 disk storage.

See Sections 3*2.7 and 3»3«

"IBM 1800 Functional Characteristics," IBM Systems Reference Library
Form No. A26-59I8-6, International Business Machines Corporation,
San Jose, California, 1968

.

9 More information may be obtained from:

Program Information Department
IBM Corporation
Poughkeepsie, New York

www.manaraa.com

www.manaraa.com

38

k. DEVELOPMENT PLANS

The AMOS system was essentially completed in December of I968

.

Work continues in several areas, however, in order to expand the

capabilities of the system and make it more useful. This section

briefly outlines some of the current and proposed projects.

k.l Analog/Digital Supervisor

Work is progressing on the development of an Analog-to-Digital

Supervisor, which will execute under control of AMOS and exercise the

full capabilities of the analog-to-digital converter and associated

equipment. The program will be made up of two phases. The interpreter

phase will accept and decode input parameters (or options) and the

executor will perform the actual conversion, under user or program

control. Each phase may be re-entered an indefinite number of times.

h.2 Assembler Macro Facility

A macro processor is currently being written for the assembler

described in Section $.h. The design of the macro processor is similar

to the facility recently incorporated into the IBM 1800 TSX assembler

(see Bibliography).

www.manaraa.com

www.manaraa.com

39

k.3 Transient Scheduler (SOJOB/EOJOB)

In order to provide more flexible job processing capability,

consideration has been given to an expansion of the SOJOB/EOJOB

program. In order to minimize internal storage requirements, the

improved program would be a transient one (it would "roll in" and

"roll out" of the application program area), as opposed to the current

version, which is always resident.

k.k .
Compiler Possibilities

Preliminary development work is being done on an 1800 FORTRAN

subset compiler, which (like the 36O-I8OO assembler) will execute on the

System/360 computer. Due to the availability of the System/360 for data

reduction purposes, it is expected that floating-point logic (for

example) will not be integrated into early versions of the compiler.

h . 5 Mult iprogramming

Another advantage of the Event Control Word concept is the

relative ease in which it allows the introduction of multiprogramming

into a system. For example, a lower priority job "y" (or background

function) can access the CPU whenever the higher priority job "x" calls

the WAIT routine; this action implies that x cannot utilize the CPU

until the completion of the asynchronous process specified by the ECW

argument, and therefore y may use the CPU until x's process has terminated,

www.manaraa.com

www.manaraa.com

ko

"Background processing" (the simplest form of multiprogramming)

is a definite possibility for a future version of AMOS. The method which

will probably be chosen utilizes one of the lower-priority hardware

interrupt levels which is currently unused.

U.6 1800/360 Parallel Computation

In order to allow System/360 "real time" analysis of data

while execution of the corresponding 1800 job is continuing, an

AMOS/36O supervisor which executes under control of Operating System/360

is currently being developed. 1800 jobs run under control of such a

program will be able to schedule execution of programs on the 360 in a

dynamic manner, with full communication and synchronization of the two

computers controlled by AMOS/360 and AMOS/1800.

www.manaraa.com

www.manaraa.com

1+1

BIBLIOGRAPHY

"Attached Machine Operating System User's Guide, Version 2,"
Department of Computer Science, University of Illinois,
Urbana, Illinois, 1968

.

Fitsos, G. P. "Macro Assembly Program for the IBM 1800 TSX II

System," International Business Machines Corporation,
San Jose, California, 1967*

Gillette, W. L., Jr. "IBM Selector Channel - Principles of
Operation," IBM Form No. L26-2031+-2, International Business
Machines Corporation, San Jose, California, 1968.

"IBM 1800 Assembler Language," IBM Systems Reference Library
Form No. C26-5882-3, International Business Machines
Corporation, San Jose, California, 1966

.

"IBM 1800 Functional Characteristics," IBM Systems Reference
Library Form No. A26-5918-6, International Business Machines
Corporation, San Jose, California, 1968

.

Wells, R. A., Carter, C. E., and Friedman, H. G. "ILLINET Analog
Facilities," Department of Computer Science, University of

Illinois, Urbana, Illinois, Report No. 280, 1968

.

www.manaraa.com

www.manaraa.com

k2

APPENDIX A

SYSTEM TABLES

www.manaraa.com

www.manaraa.com

^3

Table 1. Adapter Command Bit Assignments

2nd word of 1800
i/O control command

r-
—

t—i——1

—

110 1

I I
-

1 x y

\ 1 1 1 ii p-

yyyyzzzz

Adapter I/O
Area Code Command Modifiers

The "i/O command" field (lxy) is either 101 (initialize write)

or 110 (initialize read). The five y bits determine the logical command

to be executed by AMOS/360 as well as the direction of any real or dummy

data transfer. The four z bits address the file to be operated on (from

to 15)

.

The five y bits determine a number from to 31; each number

has assigned to it a logical command according to the following table.

Note that commands 0-15 are read commands and each must therefore be

answered by a 360 write command, whether or not meaningful data is to

be transferred. The complementary condition exists for commands 16-31-

1*

2*

3*

U*

5

6

read (transfer data from 360 to 1800)

read backward

point (360 repositions file to previously "noted" point.)

backspace record

backspace file

rewind file

request 1800 initial program load (360 sends IPL data on

subsequent reads.)

www.manaraa.com

www.manaraa.com

kh

7 request current time (3&0 sends current time of day.)

8-15 currently, no operation

l6 write (transfer data from 1800 to 360)

17* note (360 sends 1800 reference to current file position.)

18 find (Pass 360 a name x; 360 honors subsequent file k

reads with object data of program x.)

19* forward space record

20* forward space file

21* write tape mark

22 query (Inform AMOS/36O of 1800 job termination; clearing of

this command by AMOS/360 signifies request to process new job.)

23-31 currently, no operation

^currently not supported by AMOS/36O

www.manaraa.com

www.manaraa.com

^5

Table 2. System Vector Table (VECT)

The System Vector Table is always located beginning at internal

storage location 23, n « Following the table, some of the more important

non-address locations are discussed in more detail.

Symbolic

Location (dec/hex) Name Contents

0023 0017 VIOSU address of program IOSUP

002h 0018 VSOJO address of program SOJOB

0025 0019 VEOJO address of program EOJOB

0026 001A VLOAD address of program LOADR

0027 00IB VDIMP address of program DUMP

0028 001C VINEE address of program INREQ

0029 00 ID VIOER address of program IOERR

0030 001E VSYSI address of program SYS IN

0031 00IF VSYSO address of program SYSPR

0032 0020 VSYSP address of program SYSPU

0033 0021 VSYSB address of program SYSPB

003^+ 0022 VSYSM address of program SYSMS

0035 0023 VCWRI address of program CWRIT

0036 002k VREPL address of program REPLY

0037 0025 VKBTB address of keyboard translate table

0038 0026 VMESS address of console typewriter input message

0039 0027 WAIT address of WAIT routine

ooUo 0028 VTIME address of TIME (of day) routine

www.manaraa.com

www.manaraa.com

Table 2 .--Continued

U6

Symbolic

Location (dec/hex) Name Contents

0055

0056

0057

0058

0059

0060

0061

0062

0063-^

OO65

0066

00U1 0029 not used

00U2- 3 002A- B VTBAS time ba:>e (used by TIME)

00M+- 5 002C- D VCNCL IOCC to cancel a job

00^6- 7 002E- F VENAB IOCC to enable all interrupts

00^8- 9 0030- 1 VDISB IOCC to disable all interrupts

0050 0032 WTIM address of routine CVTIM

0051 0033 VCONS address of typewriter UCB

0052 003^ VCNIL address of typewriter interrupt level

0053 0035 VMXDV maximum number of I/O devices on 1800

005^ 0036 VCEW Channel Event Word

0037

0038

0039

003A

003B

003C

003D

003E

003F-U0

00^1

00^2

VDEVT

VC0DE

VERAD

VFIAG

VKEYS

VBATA

VPSTR

VPEND

VTECW

VPECW

VCECW

address of the Device Table

job termination code

address of program error

system job flags

panel key status

panel data switch status

partition starting address

partition ending address

ECW's for timers A and B

Process Interrupt ECW

Analog Comparator ECW

www.manaraa.com

www.manaraa.com

^7

VCEW, the channel event word, is used by IOSUP to indicate

the status (whether active or inactive) of the various data channels

attached to the 1800. If bit n of VCEW is on, then data channel n is

active. Bit is not used; its status of zero is typical of the

non-data channel devices (see Table k, symbol UCHAN) .

VCODE and VEEAD are used to indicate the type and general

location of errors encountered during job processing by AMOS.

Exceptional conditions, when detected by AMOS program, result in the

setting of VCODE to a unique positive number (the error code), and

VERAD to the address where the error occurred (if available);

control is then passed to EOJOB.

VFLAG is used by the job scheduler to indicate various

options and requests made by the application program.

VKEYS and VDATA contain the status of the 1800 panel keys

and data entry switches at the time of the last panel interrupt. They

serve no special purpose for AMOS.

www.manaraa.com

www.manaraa.com

U8

Table 3> Vector/Unit Control Block Interface

The following diagram illustrates how, given a device address,

the corresponding Unit Control Block is located. For example, given

an address m: if C(VDEVT) +m contain 0, there is no such device

(likewise if m > n) . If c[c(VDEVT)+m] = j ^ 0, then y is the address

of the Unit Control Block for device x

.

VECT (or Table)

Device Pointer
Table (DEVT)

Unit Control Blocks

*C(x) means "contents of location x"

www.manaraa.com

www.manaraa.com

^9

Table k. Unit Control Block Format

There is one Unit Control Block (UCB) for each device attached

to the 1800 system; a detailed description of the major entries is found

following the table.

Symbolic
Displac ement (dec/ hex) Name Definition

0000- 1 0000- 1 UIDSW IOCC to sense the Device Status Word
(DSW)

0002 0002 UDSW Last DSW for this device

0003 0003 UCHAN Data channel mask

000>+ 000U UFLAG Flag bits

0005 0005 UBUSY "Device busy" DSW mask

0006 0006 UECW Address of last ECW used for this
device

0007 0007 UCMBA Address of last IOCC used for this

device

0008 0008 UCODE Device area code

0009 0009 UNAME Device name (in hexadecimal)

0010- 1 000A- B URDSW IOCC to sense and reset the DSW

0012 000C UDVND Device termination mask

0013 000D UIGNR DSW bits which may be ignored

001U* 000E UCYL Current cylinder (if 2310 disk)

0015- 7* 000F- 11 UVOL Currently mounted volume (if volume
mountable device - disk or tape)

*optional

www.manaraa.com

www.manaraa.com

50

If the associated device is attached to data channel n, then

bit n of UCHAN is 1. IOSUP verifies "channel ready" by ANDing UCHAN

with VCEW, with a result of zero meaning that the associated data

channel is not active. UCHAN is zero for non-channel devices, hence

the test cannot fail for them.

UBUSY is a mask which isolates those bit(s) in the device's

DSW (Device Status Word) which indicate the busy status of the device

(used by IOSUP)

.

UDVND (another mask) is used by the NUCLS "POST" routine to

determine whether or not a device interrupt was due to the termination

of data channel input/output operation. If so, the terminating DSW is

stored into the associated ECW (via UECW) , thus setting it non-zero.

www.manaraa.com

www.manaraa.com

51

Table 5. Object Card Image Formats

This collection of tables describes the format of the object

output of the 36O-I8OO assembler outlined in Section 3«*+- Each "deck"

produced by the assembler begins with a "TSX" record, followed by an

arbitrary number of "text" records, and finally an "end" record. Each

record is 60 words long; the corresponding punched card format is

therefore in column binary, one record per card.

Record Type Word .Displacement Contents

TSX

text

end

5

9-10

11

12-38

2

3-8

9-n

3

number of external entry point
definitions (l < n < 10)

symbolic name of entry point 1

(5x6 form)

relative address of entry point 1

same for entry points 2-10

relative origin of this text data

number of text words in this record

relocation bits for text words in

this record

text content of this record

relative entry point for program
execution

*60 words x 16 bits per word = 960 bits
80 columns x 12 punches per column = 96O punches

www.manaraa.com

www.manaraa.com

52

There are two relocation bits for each word of text. 00 means

that the corresponding text word is to be loaded without modification,

01 means the word contains an address which should be relocated, and 11

indicates that the next two words make up a "call" to an external entry-

point. The content of the two words is the symbolic name to be called

in 5 x 6 form. These words are replaced (by LOADR) with a long- form

BSI instruction when the address of the desired reference is available.

The "5 x 6" character format is detailed in this Appendix,

Table 6.

www.manaraa.com

www.manaraa.com

53

Table 6. External Symbol Table Formats

The External Symbol Table is built by LOADR during the process

of loading in an application program (see Section 3-2.5)- The table is

composed of a serial string of "origin", "definition", and "reference"

elements

.

One origin element is present for each separately assembled

subprogram (main program or subroutine); "definition" and "reference"

elements relate to external symbol definitions (EKT statements) and

references (CALL statements), respectively.

Origin Element

word 1=0

x = 1 means program was loaded
so as to resolve a CALL
reference

15
i i . : -

0000000000000000

X absolute origin
of subprogram

Definition Element

symbolic name of

definition (in 5 x 6 form)

absolute address of

this definition

15

word 1 >

www.manaraa.com

www.manaraa.com

^

Reference Element

15II 1 ' 1

1111111111111111

absolute address of
the reference*

word 1 <

Symbols are limited to five characters. The 5x6 code name

arises from "a maximum of five characters with six bits allocated for

each character". Thus, a name in 5 x 6 form occupies the low order

30 bits of an 1800 doubleword; by convention, the high-order two bits

are zero.

The code used for character representation is not BCD, but

rather a truncated form of EBCDIC. This is possible because llxxxxxx

is the 8-bit EBCDIC form for all numerals and upper case alphabetics.

In 5 x 6 code, the high-order '11' is not used.

*which initially contains the 5x6 form of the reference name

www.manaraa.com

www.manaraa.com

55

Table 7. AMOS Storage and Entry Point Map

The following table outlines the various programs which make

up the resident portion of AMOS/18OO; the approximate size of each

program is given along with the various entry points (subprograms)

found within each.

Program Size (dec) Entries (callable)

NUCLS 900 CVTIM, OVHEX, WAIT, TIME

CASUP 100 CASUP

CNSUP 350 CWRIT

CSERV 200 CSERV, REPLY

INREQ 100 INREQ, IOERR

IOSUP 100 IOSUP

KBTAB 125

LOADR 1+25 LOADR

CAFIL 375 SYSIN, SYSPR, SYSMS, SYSPU, SYSPB

DUMP U25 DUMP

SOJOB 325 SOJOB, EOJOB

3^+25

www.manaraa.com

www.manaraa.com

56

APPENDIX B

AMOS/1800 PROGRAM LOGIC FLOW DIAGRAMS

www.manaraa.com

www.manaraa.com

57

interrupt
branch
table

-£>

save machine
conditions

locate UCB for
interrupting
device

sense and reset
terminal status

common
POST
routine
(reentrant)

typical
interrupt
routine

store status into
associated ECW
(set to non-zero)

J2_

restore
machine
conditions

resume
suspended
processing

Figure B-l.

NUCLS Interrupt Logic

www.manaraa.com

www.manaraa.com

(
CWRIT)

<y

(is mode = Y2£_j
"idle"? J '

i:
yes

v wait

set mode to
"writing"

|
initiate

j

print of
1st character

i

58

no^

no/

keyboard A
request? J

yes

JZ_

A mode "idle"?
)

i.
yes

set mode to
"read"

I

„..-3L

get ready for
input char

.

Figure B-2

.

Console Typewriter Input/Output Supervisor (CNSUP)

www.manaraa.com

www.manaraa.com

59

-Of carriage heme? rx~

no

output ^\
interrupt? J

yes

SL
no (input)

i
read in

j character

SL

return
carriage

C4 return
J

SL
,4's it control"^ yes Y~
\ character? l

v

what kind?

SL
no (data)

character
error

D-
end of message

field error

translate
to EBCDIC,
save

jget tilt-rotate I

and i

j start print

J

delete
last input
character

I exit j

any more >^

characters?
no

r
!
yes

A?

initiate
output of I r

next char.

1

reset
pointers

SL

return
carriage

i

2.

call CSERV
to processing

A
return
carriage

zz.

set mode
to "idle"

Figure B-2 .--continued

www.manaraa.com

www.manaraa.com

6o

' previous req

.

\yes

outstanding?
\

,
/

I no

^7

save ECW and
buffer addrs

0.
(cancel)

2.

terminate
job

v.

\ error/

\ /

v

error,

/
/

\/

(CSERV
J

process
message

M
(mount

)

R

(reply)

show volume
mounted on

device

V

i
(vary)

vary I/O
device
on/offline

I return
J

reply request
outstanding?

A

no

._JZL

yes

move text

Sl

post ECW

Figure B-3.

Console Message Handler (CSERV")

www.manaraa.com

www.manaraa.com

6i

(
IOSUP)

/are input \ no
[parameters OK? }

k
f is data "*\no

channel busy?
]

J

.1
yes

wa it on

data channel

-m

is device
ready for DCC?J

/are we initiating \yes iJ , . , -, i
yes

i-ia data channel
operation?

v

no

f
no, intervention

is device | required
busy?

update channel

event word

no

~

b

yes

-V

wait on

device call INEEQ

execute
IOCC

Figure B-U.

Input/Output Supervisor (IOSUP

)

^devices not attached to a data channel automatically pass this test

www.manaraa.com

www.manaraa.com

62

(LOADR \

initialize EST*
with nucleus
entries

get TSX** L

card image

EOF

1
move
definitions

j
to EST

k

get next
object card

j

image**

~f>

enter CALL
reference
into EST

CALL
stmt

,

rel.
data

/-

{ data type?

" z
— AJ

absolute
data or

instr

.

compute origin

of data and
store

get next
word(s) of

data

4A

no yes

more data
^A in card?

Figure B-5«

Program Loader (LOADR)

*External Symbol Table: see Appendix A and Section 3*2.5

**from logical file h of the adapter

www.manaraa.com

www.manaraa.com

2L

end card?
""N nc
1 >—

yes

compute entry
point if 1st

subprogram

X

compute origin

! of next
subroutine

error,

V
scan EST
and resolve
as many
xrefs as can

i

no

zero out
unoccupied
core

\7

xfer to
loaded
rogram
transparent)?

J any
unresolved 9

yes

^

let x denote first!

such unresolved

I7
/did AMOS/360N
fail to
provide x

v. earlier? i

"1

ino
i

5Z

inform AMOS/36O

to "load"
file k with
program x

63

Figure B-5 .--continued

www.manaraa.com

www.manaraa.com

6k

read a

SYSIN card

print card
image

yes

V
$$JOB'

no

I! send~toCSERV

4 go to LOADR,X

-H
type SOJOB

;
message

reset job
switches

IV
(a\

I EOJOB
J

}
position file

\h to x

i

i.

no

2 X

I

^" x = *?

no

read next
card and
print

yes

"^ $$EXC,X?)

i
reset various
hardware
controls

yes
. f

type EOJOB
message

-2

restore unit
status via
UCB's

I
send query tc

AMOS/360

wait on 360
response

----- •> a
E0F K

-- y Figure B-6.

1800 Job Scheduler (SOJOB/EOJOB)

www.manaraa.com

www.manaraa.com

65

f SYSIN
J

read

|
file 1

[„ V1rm _ t ^

—M—

EOF?

no

\7

"^

i
no

i

~JC

return >

"with data i

yes

take

caller's
"eof" exit

f SYSMS
)

send print
line image
to file 2

\

Jfe _
send log
line image
to file

SYSIN
SYSPR
SYSMS
SYSPU
SYSPB

system input
system output
system message output
card output (EBCDIC)
card output (col. binary)

set to send
^0 words

send data
to file 3 h

e
set to send
80 words

2

convert data
to 360 col.
binary

Figure B-7.

Adapter File Control (CAFIL)

www.manaraa.com

www.manaraa.com

66

initialize
VECT

T
read
switches
into VECT

$

compute
partition
boundaries

I
protect
low core

type out
IWIT

message

Figure B-8

.

Initialization Program (INIT)

www.manaraa.com

www.manaraa.com

#
**

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

^
*fr

www.manaraa.com

0»*

BM

www.manaraa.com

UNIVERSITY OF ILLINOIS-URIAH*

3 0112 002612627

